Some Properties of the (p, q)-Fibonacci and (p, q)-Lucas Polynomials
نویسندگان
چکیده
Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called p, q -Fibonacci polynomials. We obtain combinatorial identities and by using Riordanmethodwe get factorizations of Pascal matrix involving p, q -Fibonacci polynomials.
منابع مشابه
Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملq-ANALOGS OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
The Fibonacci operator approach inspired by Andrews (2004) is explored to investigate q-analogs of the generalized Fibonacci and Lucas polynomials introduced by Chu and Vicenti (2003). Their generating functions are compactly expressed in terms of Fibonacci operator fractions. A determinant evaluation on q-binomial coefficients is also established which extends a recent result of Sun (2005).
متن کاملGeneralized Bivariate Fibonacci-Like Polynomials and Some Identities
In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...
متن کاملA curious q-analogue of Hermite polynomials
Two well-known q-Hermite polynomials are the continuous and discrete q-Hermite polynomials. In this paper we consider a new family of q-Hermite polynomials and prove several curious properties about these polynomials. One striking property is the connection with q-Fibonacci and q-Lucas polynomials. The latter relation yields a generalization of the Touchard-Riordan formula.
متن کاملOn the Expansion of Fibonacci and Lucas Polynomials
Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials using bases of Fibonacci-and Lucas-like polynomials. Here, we provide simplified proofs for the expansion formulaethat in essence a computer can do. Furthermore, for 2 of the 5 instances, we find q-analogues.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012